Reply dated June 25, 2007

to Office Action of March 23, 2007

Page 9 of 13

REMARKS

Claims 1-16 are pending in the application. Claims 1 and 8 are independent.

An Embodiment of the Present Invention

An embodiment of the present invention is directed to a method of controlling a solid-

state image pickup apparatus, which includes:

a photometry step of executing photometry with the field;

a signal processing step of processing the image signal; and

a control step of switching signal processing of said signal processing step in

accordance with a result of photometry executed in said photometry step;

wherein the control step includes estimating influence of shading on the image signals

from the relatively high photosensitive cell and the relatively low photosensitive cell, and

in the signal processing step, color difference gain processing for the image signal is

switched in accordance with control of said control step to thereby lower a chroma of the

image signal.

Claim Rejections - 35 U.S.C. § 103

(a) Claims 1-4, 8-11, and 15-16 have been rejected under 35 U.S.C. § 103(a) as

being unpatentable over Yamashita et al. (USP 6,750,437) in view of Suzuki et al. (USP

4,710,803), and Nakano et al. (USP 6,094,220). This rejection is respectfully traversed.

With regard to the "control step" of the present invention, the Examiner states, in the

Office Action, that Yamashita discloses the claimed feature in col. 7, line 9 - col. 8, line 11.

Reply dated June 25, 2007

to Office Action of March 23, 2007

Page 10 of 13

Further, with regard to the "signal processing step," the Examiner states that Yamashita

discloses the claimed feature in col. 8, lines 2-11.

However, Yamashita merely states, in col. 7, line 9 - col. 8, line 11, the brightness is

determined according to the result of the photometry, the system control and operation unit 9

calculates a distance to the object based on signals output from the solid-state image pickup

element 4 (which includes photoelectric conversion elements 301 and 302), the lens is focused,

main exposure is started, an image signal output from the solid-state image pickup element 4

(i.e., a signal acquired by adding a signal from the photoelectric conversion element 301 and a

signal from the photoelectric conversion element 302) is corrected and converted from analog

form to digital form, and the converted signal is stored a memory unit 10.

The Examiner states that Suzuki discloses a solid-state image sensor including a

plurality of composite pixels arranged in a photosensitive array and each of which including a

main photosensitive cell and an auxiliary photosensitive cell.

The Examiner also states that Nakano discloses a signal processor and an image

extraction unit for processing an image signal, and a controller for switching signal processing

the signal processor in accordance with components of the lens block and with a result of

photometry. Further, the Examiner states that Nakano discloses that, in the image extraction

unit, the image signal undergoes color difference gain processing wherein the image signal is

switched in accordance with a microcomputer of the controller, which will lower a chroma of

the image signal.

Birch, Stewart, Kolasch & Birch, LLP

Applicants respectfully submit, however, that even assuming that the foregoing cited

references can be combined, which Applicants do not admit, Yamashita in view of Suzuki and

Reply dated June 25, 2007

to Office Action of March 23, 2007

Page 11 of 13

Nakano fails to disclose or suggest the "control step," which includes "estimating influence of

shading on the image signals from the relatively high photosensitive cell and the relatively low

photosensitive cell," and the "signal processing step," in which "color difference gain

processing for the image signal is switched in accordance with control of said control step to

thereby lower a chroma of the image signal," as recited in claim 1.

The Examiner relies on Ng to allegedly teach an image device with a controller that

compensates the shading on the basis of the photometry result along with a gain/filter

corrector. However, Ng only appears to teach a shading compensation circuit for sensor

nonuniformity correction, based on a dark current and a sensor gain which are different for

each pixel on the CCD. See col. 2, line 61-col. 3, line 1. These pixels are not disclosed as

relatively high and low photosensitive cells. Also, Ng fails to teach or suggest a controller

which estimates influence of shading on image signals from both a relatively high

photosensitive cell and a relatively low photosensitive cell. Furthermore, even if Ng were to

teach relatively high and low photosensitive cells, which Applicants do not concede, one of

ordinary skill in the art would still not be motivated to control "estimating influence of shading

on the image signals from the relatively high photosensitive cell and the relatively low

photosensitive cell," at least because Ng discloses shading compensation based on dark current

sensor gain and not based on "estimating influence of shading on the image signals from the

relatively high and relatively low photosensitive cells."

Birch, Stewart, Kolasch & Birch, LLP

Applicants submit that the prior art, alone or in combination, fails to disclose at least

the aforementioned features of independent claim 1. Therefore claim 1 is allowable.

Reply dated June 25, 2007

to Office Action of March 23, 2007

Page 12 of 13

Claims 2-4, 6, and 7, variously dependent on claim 1, are allowable at least for their

dependency on claim 1.

Claim 8 is allowable at least for the similar reasons as stated in the foregoing with

regard to claim 1.

Claims 9-11, and 13-16, variously dependent on claim 8, are allowable at least for their

dependency on claim 8.

The Examiner is respectfully requested to reconsider and withdraw this rejection.

(b) Claims 5 and 12 have been rejected under 35 U.S.C. § 103(a) as being

unpatentable over Yamashita et al. in view of Suzuki and Nakano, respectively, and further in

view of Nakata et al. (USP 6,747,696). This rejection is respectfully traversed.

Claim 5, indirectly dependent on claim 1, is allowable at least for its dependency on

claim 1.

Claim 12, indirectly dependent on claim 8, is allowable at least for its dependency on

claim 1.

The Examiner is respectfully requested to reconsider and withdraw this rejection.

(c) Claims 6-7 and 13-14 have been rejected under 35 U.S.C. § 103(a) as being

unpatentable over Yamashita in view of Suzuki and Nakano, respectively, and further in view

of Ng et al. (USP 5,699,102). This rejection is respectfully traversed.

Claims 6 and 7, variously dependent on claim 1, are allowable at least for their

dependency on claim 1.

Birch, Stewart, Kolasch & Birch, LLP DRA:MH:JRS/pjh

Reply dated June 25, 2007

to Office Action of March 23, 2007

Page 13 of 13

Claims 13 and 14, variously dependent on claim 8, are allowable at least for their

dependency on claim 8.

The Examiner is respectfully requested to reconsider and withdraw this rejection.

Conclusion

Accordingly, in view of the above amendments and remarks, reconsideration of the

rejections and objections, and allowance of the pending claims are earnestly solicited.

Should there be any outstanding matters that need to be resolved in the present

application, the Examiner is respectfully requested to contact Maki Hatsumi (#40,417) at the

telephone number of the undersigned below, to conduct an interview in an effort to expedite

prosecution in connection with the present application.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future

replies, to charge payment or to credit any overpayment to Deposit Account No. 02-2448 for

any additional fees required under 37 C.F.R. § 1.16 or under 37 C.F.R. § 1.17; particularly,

extension of time fees.

Dated: June 25, 2007

Respectfully submitted.

D. Richard Anderson

Registration No.: 40,439

BIRCH, STEWART, KOLASCH & BIRCH, LLP

8110 Gatehouse Road, Suite 100 East

P.O. Box 747

Falls Church, Virginia 22040-0747

(703) 205-8000

Attorney for Applicant

ျှာင် DRA:MH:JRS/pjh